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Abstract
Acoustic wave propagation plays a fundamental role in various scientific and en-
gineering disciplines, including medical imaging, seismology, and acoustics. Tra-
ditional numerical methods such as the Finite Element Method (FEM) and Fi-
nite Difference Method (FDM) are widely used to model these waves [1, 2], but
they often suffer from computational inefficiencies, especially for high-dimensional
problems or complex geometries. This work explores the application of Physics-
Informed Neural Networks (PINNs) as an alternative approach, leveraging deep
learning to solve wave equations efficiently [3]. PINNs integrate physical laws di-
rectly into the neural network’s loss function, enabling solutions that adhere to the
governing differential equations. We present a comparative analysis of PINNs with
traditional numerical solvers, highlighting advantages, limitations, and potential
improvements. Our experiments demonstrate that PINNs can effectively model
wave propagation with comparable accuracy while reducing computational cost in
certain scenarios.

Problem 1 (Physics-Informed Neural Networks for Wave Propagation). The prob-
lem of modeling acoustic wave propagation is traditionally solved using numerical
methods. However, these approaches can be computationally expensive, particularly
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in complex environments where high-resolution simulations are required. Addition-
ally, handling complex boundary conditions and material heterogeneities presents
challenges for classical solvers. It has been already shown that the PINNs can to
improve simulation efficiency and accuracy, reducing reliance on extensive mesh
generation and computational resources for wave propagation [4]. Our research is
analyzing specifically acoustic waves.

Definition 2. A PINN is a deep learning model that embeds physical laws, such
as differential equations, into its loss function to enhance learning. This reduces
dependence on large datasets while ensuring solutions comply with fundamental
physics.

The 2D acoustic wave equation describes wave propagation in a homogeneous
medium:

∂2u

∂t2 = c2
(

∂2u

∂x2 + ∂2u

∂y2

)
, (1)

where u(x, y, t) is the wave field, and c is the wave speed.
Common boundary conditions include Dirichlet (u prescribed on ∂Ω), Neumann

(normal derivative prescribed), and absorbing (reducing reflections).

Theorem 3. A properly trained PINN can approximate solutions to the 2D acous-
tic wave equation with accuracy comparable to numerical solvers. The optimization
minimizes the loss function:

L = Lphysics + Ldata + Lboundary, (2)

where Lphysics enforces wave constraints, Ldata accounts for data errors, and Lboundary

ensures boundary condition compliance.
For an ideal PINN:

lim
N→∞

||uP INN (x, y, t) − utrue(x, y, t)|| = 0, (3)

where utrue is the exact wave solution, given adequate training and a well-defined
loss function.

Remark 4. While PINNs show promising accuracy, they require careful hyperpa-
rameter tuning and sufficient training data for optimal performance. Additionally,
training PINNs for complex wave phenomena can be computationally demanding
due to the need for high-resolution temporal and spatial domain coverage. Improv-
ing network architectures, such as using adaptive activation functions and domain
decomposition techniques, can enhance convergence rates and accuracy.

Example 5. We apply PINNs to 1D, 2D and even 3D acoustic wave simula-
tion, comparing the results against FEM and FDM solutions. The simulation
involves a circular wave source in a heterogeneous medium with absorbing bound-
ary conditions. The PINN-based approach demonstrates lower computational cost
in high-dimensional settings while maintaining a relative error below 5% compared
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to numerical solvers. Additionally, PINNs are evaluated for their robustness in
handling irregular geometries, showcasing their potential for practical applications
in real-world problems. A simple example of PINN and analytical solution of Eq.
1 in 2D space for a sinusoidal wave source is presented at Fig. 1.

Figure 1. PINN and analytical output for 2D sinusoidal acoustic
wave.

Corollary 6. By integrating boundary conditions more effectively and optimizing
network architectures, PINNs can further improve accuracy, making them a viable
alternative to traditional solvers in specific scenarios. The hybridization of PINNs
with traditional numerical methods, such as coupling PINNs with finite difference
schemes for data augmentation, can lead to enhanced efficiency and broader appli-
cability in wave simulation problems.
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