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Abstract

In clinical decision support systems (CDSS), where precise classification of drug-
drug interactions (DDIs) [10] can directly affect treatment safety and outcomes,
understanding how drugs interact—-whether they enhance each other’s effects or
interfere with each other—is a major issue. We present a scalable and efficient
method for classifying DDIs using a fine-tuned biomedical language model. Our
method minimizes resource use during fine-tuning [1, 2] by using BiomedBERT
[3, 5], a domain-specific variation of BERT [6, 9] pre-trained on biomedical lit-
erature, further adapted through Low-Rank Adaptation (LoRA) [4]. The goal is
to categorize DDIs into two clinically relevant types: Synergistic and Antagonistic
interactions. Initially, BiomedBERT is fine-tuned on a labeled subset of interaction
descriptions sourced from DrugBank. To address the challenge of limited labeled
data, we introduce a pseudo-labeling strategy: the fine-tuned model is used to
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infer interaction types for the remaining unlabeled data. A checkpointing mech-
anism stores predictions and confidence scores incrementally, so guaranteeing the
process is resumable and strong against system interruptions. Unlike traditional
approaches depending on rigorous confidence thresholds, our framework logs all pre-
dictions so enabling manual or rule-based refining downstream. This enables the
construction of large, high-quality labeled datasets without extensive human anno-
tation. Advanced machine learning pipelines base their work on the resulting clas-
sification dataset. This architecture’s modularity lets it be easily adapted to other
biomedical classification chores or extra interaction categories. Furthermore, our
approach is model-agnostic and can be extended to other transformer-based back-
bones fine-tuned for pharmacovigilance or electronic health record mining. These
design decisions guarantee wide applicability over clinical natural language pro-
cessing (NLP) pipelines and enable scalable deployment in actual settings. Above
all, this study gets one ready for a more broad clinical application. The designated
classified interactions are meant to enable next studies on DDI prediction models
for integration into CDSS [8], systems [7] which can help doctors choose safe and
efficient polypharmacy plans, maximize drug combination treatments, and avoid
side effects by means of optimizations. Through the identification of synergistic
and antagonistic drug effects, our method helps to create intelligent, data-driven
tools for individualized medicine and therapeutic planning. Our pipeline—built on
LoRA-based adaptation and iterative pseudo-labeling—offers a reproducible, low-
resource strategy for biomedical NLP and DDI classification at scale and it lays
the foundation for better, evidence-based decision-making in multi-drug treatment
environments by bridging the gap between raw biomedical data and pragmatic
clinical utility.
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